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Abstract--Viscous resuspension of heavy particles in fully developed laminar flows in a horizontal pipe 
is investigated theoretically by extending the model used previously for unidirectional flows to cases in 
which all three velocity components are non-zero due to the existence of a secondary motion within the 
cross section of the pipe. The resulting mathematical system of equations was solved by employing the 
Galerkin finite-element method. The theoretically predicted velocity and concentration profiles for flow 
in a circular pipe were found to be in very good qualitative agreement with experimental results reported 
by others, even though the analysis did not make use of any adjustable parameters. 
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1. I N T R O D U C T I O N  

It was reported in earlier publications (c.f. Leighton & Acrivos 1987) that, in concentrated 
suspensions undergoing shear, a flux of  particles is induced from regions of high shear to low and 
from regions of  high particle concentrations to low. This phenomenon, termed shear-induced 
diffusion, arises from the hydrodynamic interaction among neighboring particles and often creates 
a non-uniform particle distribution in flowing suspensions that were initially well mixed. This fact 
has important implications in the field of  viscometry where the interpretation of  effective viscosity 
measurements in concentrated suspensions is subject to serious errors if the shear-induced 
non-uniformity in the particle concentration within the measuring device is not properly taken into 
account. It is also an important factor in many industrial processes of  material manufacturing, 
where the performance of the finished product is greatly affected by the degree of  solids dispersivity 
(Sinton & Chow 1991). In addition, shear-induced particle diffusion is responsible for the observed 
phenomenon of  viscous resuspension wherein, under the action of  shear, an initially settled bed 
of  particles in contact with a clear fluid above it can be resuspended and the particles kept in 
suspension even under laminar flow conditions (Leighton & Acrivos 1986; Acrivos et al. 1993). 

To date, shear-induced diffusion and viscous resuspension have been investigated theoretically 
only for a few unidirectional or quasi-unidirectional flows, e.g. Couette flow, channel flow and flow 
down an inclined plate (Leighton & Acrivos 1986, 1987; Schaflinger et aL 1990; Nir & Acrivos 1990; 
Phillips et al. 1992; Koh et al. 1994; Acrivos et aL 1993), but not for any of the numerous 
multidimensional flows which are more often encountered in practice. One such example is the flow 
in a horizontal circular pipe of an initially well-mixed suspension of  heavy particles in a viscous 
fluid which, far from the entrance, becomes stratified with the suspension occupying the bottom 
portion of the pipe and the clear fluid above it. Here, in contrast to the corresponding suspension 
flow of neutrally buoyant particles (Phillips et al. 1992), the existence o f a  non-axisymmetric density 
distribution induces a secondary flow within the cross-section of the pipe and, hence, even for a 
fully-developed flow, all three velocity components will be non-zero and will be functions of the 
two transverse coordinates. Obviously, this secondary flow generates a convective particle flux 
along the cross-sectional plane, in addition to the flux due to shear-induced diffusion and 
gravitational sedimentation. Such secondary flow patterns also are created when a suspension of 
heavy particles is made to flow in a channel when the side-wall effects cannot be ignored, as well 
as in a wide-gap Couette viscometer. 

The purpose of this paper is to present a theoretical analysis of a class of these more complicated 
resuspension flows. In the next section, we develop a mathematical model, essentially identical to 
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that used previously (Schaflinger et al. 1990), in which the suspension is viewed as an 
effective continuum Newtonian fluid with concentration-dependent effective properties. This 
model, which also includes the contribution of shear-induced particle diffusion due to gradients 
both in the concentration and in the shear, leads to a system of 5 partial differential equations 
in the two transverse coordinates, i.e. the continuity equation, the 3 momentum equations and 
the balance equation for the solid particles, rather than 2 ordinary differential equations as for 
a unidirectional flow (Schaflinger et al. 1990). These equations are strongly coupled and 
non-linear and their solution is stiff, in the sense that, as the suspension-clear fluid interface, the 
location of which is unknown a priori, is approached from below, the particle concentration 
varies rapidly over a small distance. A special numerical code was therefore developed using the 
Galerkin finite-element method. The numerical algorithms adopted in the code will be described 
in section 3. 

The fully developed suspension flow within a horizontal circular pipe was then examined on the 
basis of this code, and the numerical results thereby obtained, which did not entail the use of any 
adjustable parameters, will be compared in section 4 with the experimental results reported by 
Altobelli et al. (1991), who measured the corresponding flow velocities and particle distributions 
by employing the technique of nuclear magnetic resonance imaging. These are, to our knowledge, 
the only comparable measurements for a non-unidirectional suspension flow. Some of these 
experimental results are especially interesting and rather surprising, e.g. the observation that, for 
the case of a large mean particle concentration, a highly concentrated core formed slightly above 
the pipe centerline. It will be seen that our theoretical predictions are in very good qualitative 
agreement with all the experimental findings referred to above. 

2. MATHEMATICAL FORMULATION 

Consider then the flow of a suspension of heavy solid spherical particles of radius a in a liquid 
of viscosity #t when the mixture can be modeled as an effective continuum Newtonian fluid with 
concentration-dependent effective properties. We further suppose that the particle Reynolds 
number is vanishingly small. The equations of motion for the suspension reduce therefore to the 
incompressible Navier-Stokes equations in terms of bulk-averaged effective quantities, such as the 
velocity u and 

p = l + E c P ,  with E - P 2 - P ~ > O ,  [1] 
Pl 

where p is the effective density divided by p~, the density of the pure fluid, P2 is the density of the 
particles and • is their volume fraction. The effective viscosity of the suspension on the other hand 
can be represented by a large variety of empirical correlations, among which those used in previous 
analyses of unidirectional flows are 

given by Krieger (1972), and 

~ "~-182 
. =  1- --2j ' I21 

1.54 \2 
[3] 

proposed by Leighton & Acrivos (1987). Here, /~ is the suspension viscosity divided by #~, 
and ~m is the solid volume fraction beyond which the suspension can no longer flow. As in 
our previous studies (Leighton & Acrivos 1986; Schaflinger et al. 1990) we shall set 
cP m = 0.58. 

The particle conservation equation is obtained by balancing the fluxes due to bulk convection, 
gravitational sedimentation and shear-induced diffusion and by neglecting Brownian diffusion. 
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Next, following a standard approach, we set the settling velocity of a test sphere in the suspension, 
relative to the bulk velocity, equal to the product of the Stokes settling velocity of an isolated sphere 
times a monotonically decreasing function of q~, the so-called hindrance function f(q0,  which 
accounts for the reduction in the settling velocity due to particle interactions. Thus, the expression 
for the sedimentation flux becomes 

2 aZ(p2 - Pl ) 
No - ~f(#)g,  [4] 

9 #~ 

where, as done previously (Leighton & Acrivos 1986; Schaflinger et  al. 1990), we approximatef(~) 
by means of 

1-q~ 
f -  [5] 

P 

As mentioned earlier, up to now, expressions for the flux due to shear-induced particle diffusion 
have been proposed and tested experimentally only for unidirectional flows in which both the shear 
and the particle volume fraction are functions of a single position variable. Thus, for example, 
according to Leighton & Acrivos (1987), the particle flux can be expressed as 

N d = - O c V ~  - DsV~, [6] 

where the scalars D~ and D~ are, respectively, shear-induced diffusion coefficients and $ is the shear 
rate. In general, however, one would expect the expression for the particle flux to be more 
complicated and the diffusion coefficients to be second-order tensors rather than scalars. Indeed, 
as shown by Leighton & Acrivos (1987), even in unidirectional flows the coefficient multiplying the 
concentration gradient in [6] has a different value depending on whether the diffusion is normal 
to the plane of shear or parallel to it. Nevertheless, in order to keep the analysis as simple as 
possible, we shall proceed with our model by generalizing [6] and retaining De and D~ as scalars. 
In addition, we let the effective shear rate ~ in [6] be proportional to the square root of the second 
invariant of the rate of deformation tensor d, i.e. 

= (2d:d) '/2, [7] 

where d -  ½(Vu + VuT). For unidirectional flows, ~ in [7] is equal to the absolute value of the 
component of the shear-rate tensor along the direction of principal shear. 

Based on dimensional analysis and the mechanisms of shear-induced diffusion, it was found 
(Leighton & Acrivos 1987) that the coefficient D~ should be proportional to a2~, while Ds should 
be proportional to a 2. The dimensionless forms of these coefficients, which were used in previous 
analyses of unidirectional suspension flows, are: 

/5 c Dc = 0.43~ + 0.65~ 2 1 d/~ a~ =a2---- ~ ~--~,  /Ss= =0.43q~ 2, 

with [2] for # (Phillips et  al. 1992); and 

[8] 

/5 c = ½~(1 + ½e 8's*) + 0.6q~ 2 1 d_...~ /Ss = 0.6ff ~2, [93 
# dq~' 

with [3] for # (Leighton & Acrivos 1987; Schaflinger et  al. 1990; Acrivos et  al. 1993). 
We now restrict our attention to fully developed flows in horizontal pipes, which are driven either 

by pressure (Poiseuille flows) or by a boundary motion (Couette flows). These flows are 
two-dimensional, in the sense that the flow velocity and the particle concentration vary only along 
the cross section of the pipes. Let us further denote by xl and x2 the coordinates along, respectively, 
the horizontal and vertical directions within the cross section. Then, by introducing L and U, 
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respectively, as the characteristic length and velocity, we can write the governing equations in 
dimensionless form: 

Ouj = 0, [101 
~xj 

Re(l + EO)(~ '  c~ui' = --~-a [ 1 +uJ-~xj) 8xj -Pf~+ 21~(O)d°l--Frr 06n' i =  1,2, t i l l  

Re(1 + eO )(~t + uJ ~ )  = K + o-~j(21~(O )d3j ), [12] 

and 

aO O0 a E . aO a~ 2 ] 
a t  +uj--= axj ' [13] 

where (and hereafter) the summation convention for repeated indices (j = 1, 2) is used and 6 U is 
the Kronecker delta. This system of equations contains 4 control parameters: the Reynolds number 
Re = p~ UL/t~I, based on the properties of the suspending fluid; the modified Froude number 
Fr -= #1 U/(pz - Pl )gL2; the relative density ratio of the suspended particles to the suspending fluid 
E = (P2-  P~ )/Pl; and, 2 -= (a /L)  2, the square of the ratio of the particle size to the characteristic 
length scale. The symbol K in [12] refers to the dimensionless pressure drop per unit length along 
the length of the pipe in Poiseuille flows. For Couette flows, K = 0. 

To complete the formulation, we now turn to the boundary conditions. Although there is ample 
evidence for the existence in suspension flows of a relative velocity along the solid walls, especially 
when the suspension is concentrated (Yilmazer & Kalyon 1989), sample calculations for the simpler 
case of fully developed flow in a channel treated earlier (Schaflinger et al. 1990) showed that the 
addition of a relative velocity had a minor effect on the pressure drop and the height of the 
resuspended region for any given set of parameters, hence here we consider only the case of no 
slip. In addition, we require that the particle flux into a boundary be equal to zero, i.e. that 

(No + Nd)jnj = O, j = 1, 2, [14] 

where nj is the unit normal to each boundary. This zero flux condition applies not only on solid 
walls but also on surfaces of symmetry. Finally, if transient solutions are required, then obviously 
initial conditions need to be given. 

3. N U M E R I C A L  METHODS 

The system of equations [10]-[13] differs in two respects from that which applies typically in pure 
fluids. First, the diffusion coefficient Dc depends not only on the scalar • but also on the effective 
shear rate ~ and, furthermore, there is an additional diffusive term, i.e. the second term on the 
right-hand side of [13], which involves third-order derivatives of the flow velocity. Secondly, as seen 
from [2] and [3] and [8] and [9], the viscosity and the diffusion coefficients are all highly non-linear 
functions of O. To numerically solve this coupled system of non-linear equations, we chose to use 
the Galerkin finite-element method. 

Since the Re values for laminar suspension flows are typically low or moderate, we adopt the 
penalty formulation (c.f. Baker 1983) for [10] and [11] of the secondary flow. In this formulation, 
the suspension is supposed to be slightly compressible, and then the pressure is defined by 

= -- ct, Re # 0~j, [15] P 

with the penalty parameter ~t, being a large positive constant (Hughes et al. 1979). The pressure, 
therefore, is no longer a primary field variable. This is important for reducing the computational 
requirements, especially if one desires to extend the present numercial analysis to fully three- 
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dimensional suspension flows. Now, substituting [15] into [11], multiplying [11] by a weighting 
function w and then integrating over the cross section D, we obtain the weak form of [11]: 

fn OwOuj_ R e F r l f n w ' ~ 6 ' 2 d x ' i ' j = l ' 2 ' [ 1 6 ]  + ~t, U ~xi ~xi dX = 

where the divergence theorem has been used. Similarly, for [12], we have: 

w(1 + e ~ )  +UJOxj]dX+~e #~x j~x  dx = ~ e  wdx. [171 

We require that the weighting function w in [16] and [17] vanishes on that portion of the boundary 
where the velocity is prescribed. 

As stated in the introduction, the solution of [13] may vary sharply within a thin layer adjacent 
to the suspension--clear fluid interface. In addition, the location of this interface, which is moving 
in a time-dependent simulation, must be found as part of the solution. Therefore, it seems that an 
efficient way of constructing these solutions would be to track the interface explicitly and use an 
adaptive mesh. Nevertheless, because the implementation of such a method would be too 
complicated, we chose to solve [13] using a fixed mesh over the whole domain fl, even though this 
might significantly increase the computational requirements. Thus, multiplying [13] by a weighting 
function W and integrating over D, we have 

where the boundary condition [14] has been applied. 
The weighting functions we used in [16]-[18] are the same as the shape functions. However, as 

is well-known, in solving convection~liffusion equations by this conventional Galerkin finite- 
element method, the solutions may exhibit numerical oscillations whenever the finite-element mesh 
is not fine enough to model sharp variations in these solutions. In fact, we obtained some solutions 
in which the concentration • oscillated, particularly, about the value • = 0 in the region of the 
clear fluid. Dealing with such a numerical instability has been an active area of research in the 
finite-element field and many techniques, such as the streamline-upwind/Petrov-Galerkin method 
(Brooks & Hughes 1982) and the Taylor-Galerkin method (Usmani et al. 1992) have been 
suggested. As yet, we have not applied these techniques to improve the quality of our solutions. 

Figure 1. Finite-element mesh with 170 elements, 9 element nodes and 723 global nodes. 
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Figure 2. The axisymmetric concentration profiles • for E = 0 and ~ = 0.2. The dashed curve represents 
the analytical solution given by Phillips et al. (1992) and the solid curves are the numerical solutions using, 

respectively, 32, 66, 112 and 170 elements. 

Instead, we used a simple filtering procedure to remove such numerical noise in 4, which occured 
in the region of  the clear fluid, by setting ~ = 0 if its computed value was less than a preset constant 
0 < C ,~ 1, typically equal to 2 × 10 -3. The actual value chosen for C was adjusted to ensure 
maximal conservation of the total volume of  solid particles within the cross section, i.e. ~n • dx. 

In the spatial discretization of [16]-[18] we used the isoparametric, quadrilateral, Lagrangian 
quadratic elements (c.f. Reddy 1984). Thus, the dependent variables in [16]-[18] were interpolated 
in terms of  the quadratic shape functions ~bk, i.e. 

ui=~kU~k, ~ = ~ k k ~ k ,  i = 1 , 2 , 3 ,  [19] 

where Uik and @k denote the values of, respectively, the velocity components and the concentration 
at the nodal point k. Then, these interpolations were substituted into [16]-[18], and the resulting 
integrals were calculated by means of  a second-order Gaussian quadrature. However, a first-order 
quadrature was used in evaluating the penalty term in [16] in order to maintain numerical stability. 
Moreover, in the integrations, the function 1 + E~ was taken as constant within each element and 
equal to its value at the center node of the element. 

We found in our simulations that computational accuracy in the effective shear rate ~ was 
essential for obtaining accurate solutions. Accordingly, we defined ~ as a primary variable and 
computed it from the algebraic equation [7]. We tried several techniques which have been used in 
computing the vorticity and the pressure from finite-element solutions of the velocity (Lee et al. 
1979), and found that a local smoothing scheme gave the best results. This scheme consists of  three 
steps. First, the components of the shear-rate tensor d and its second invariant ~ are calculated at 
the element Gaussian points using 

1 f a ¢ , .  
= 2~-~x~ ujk + ~ U,k) [20] 
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Figure 3. The contours of  concentration ~ (on the right half circle) and the normalized axial velocity 
u3/U3m~, ~ (on the left half circle) for ~ =0.2  and 2 = 10 -3. The columns A, B and C correspond to, 
respectively, ¢~ = 0.1, 0.2 and 0.3, while the rows 1, 2 and 3 correspond to (Re, F r ) =  (5, 0.25), (10, 0.5) 

and (20, 1). 



586 K, ZHANG and A. ACRIVOS 

O. 

U- 3/L]- 3MA x 1. 

.I .2 .3 .4 .5 .58 

.8 .6 .4 .2 O. 

Figure 6. The contours of  the concentration 4~ (on the right half circle) and the normalized axial velocity 
U3/U3max (on the left half  circle) for case BI in figure 3 but  without the secondary-flow convection. 
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and [7], and then the values of ~ at the nodes of each element are obtained by linear extrapolations. 
Finally, those node values arising from elements which join at a given (global) node are everged 
to give a unique value of ~ at that node. 

All of our numerical computations were time-dependent and, whenever a steady solution was 
required, it was obtained as the time-asymptotic result of transient solutions. This approach 
allowed us to decouple and linearize [16]-[18] by means of successive substitutions in a time- 
stepping procedure. Specifically, this procedure entailed the following steps: 

1. It was assumed that all the dependent variables were known at time step tn. 
2. The concentration • was calculated at time tn+~ from [18], using values of all the 

variables and of the diffusion coefficients at time tn. 
3. The velocity components ul and u2 of the secondary flow were calculated from [16], 

using the updated values of • obtained in Step 2. 
4. The axial velocity u3 was calculated from [17], using the updated values of ~, um 

and u2 obtained in Steps 2 and 3. 
5. The effective shear rate ~ was calculated from [7] and [20], using all of the updated 

values. 
6. The process was then begun anew starting from Step 1. 

In addition, the diffusive terms and the penalty term in [16]-[18] were treated implicitly, except for 
the term Ds(~)d~/dxj in [18], which became an explicit force term in the implementation of the 
above procedure. On the other hand, the convective terms in [16]-[18] were treated explicitly. In 
this way, the resulting system of linear algebraic equations was banded and symmetric, and was 
solved by Gaussian eliminations and back substitutions. The explicit evaluation of the convective 
terms imposes a stability limitation on the time step size, At, which was kept constant for most 
of our computations. 

4. THE STEADY FLOW WITHIN A C I R C U L A R  PIPE 

Based on the algorithms described in the last section, we developed a finite-element code and 
then applied it to the fully developed, pressure-driven, steady suspension flow within a circular pipe. 
For this flow, we chose as the characteristic length and velocity, respectively, the radius of the pipe, 
R, and Q / R  2, where Q is the volumetric flow rate. Then, the pressure gradient K in [12] was 
determined by the flow-rate equation, i.e. 

nu3 dx = 1, [21] 

with the domain of integration t2 extending over the entire cross-sectional area. In addition, because 
the vertical diameter of the circular cross section is now a symmetric surface, solutions over only 
half of the circle are needed. Figure 1 shows the finite-element mesh used for most of the results 
given hereafter. During the construction of this mesh, every effort was made to reduce distortion 
of the elements. 

We computed the steady solutions, as mentioned earlier, as time-asymptotic results of time- 
dependent solutions, and used as initial conditions the parabolic velocity profile of a single-phase 
fluid and a uniform concentration ~. Because, as can be seen from [13], the mean concentration 
within the cross section, i.e. 

'fo = ~ • dx, [221 

must remain unchanged at any time step, we used this condition as one of the tests of computational 
accuracy in our simulations. In fact, in all of our simulations, ~ remained unchanged to at least 
one part in 106 up to the time when a region of clear fluid appeared at the top of the pipe. Beyond 
this point, the filtering procedure described in the last section was employed. 

In the special case when the suspension is neutrally buoyant (¢ = 0), the pipe flow is unidirectional 
and axisyrnmetric. An analytical solution of this reduced problem is available (Phillips et al. 1992) 
and was used in testing our code. Figure 2 shows the concentration profile in the radial direction 
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of the cross section for ~ = 0.2, where the solid curves represent our numerical results obtained 
with different number of  elements and the dashed curve is the analytical solution. We see that the 
numerical results converge very rapidly and, even with a sparse mesh (only 32 elements and 147 
nodes), the numerical curves almost coincide with the analytical profile, except near the centerline 
of the pipe where the analytical solution has the maximum value ~m SO that the local viscosity is 
infinitely large, and where the concentration gradient is discontinuous. It is obvious that, in order 
to have the numerical results converge to the exact solution in the vicinity of this singular point, 
the local mesh resolution must be infinitely high. 

We now present our predictions for the flow of suspensions containing heavy particles and 
compare them to the experimental results reported by Altobelli et al. (1991). Because the latter are 
given only in the form of color images and because our solutions using either [8] or [9] do not show 
qualitative differences, only numerical solutions using [8] will be presented hereafter for a 
qualitative comparison. Altobelli et al. (1991) used in their experiments Lubrabead particles of 
effective density 1.03 g/cm 3, mixed in a viscous oil of density 0.875 g / c m  3 and viscosity 3.84 P. The 
mean diameter of the particles was 0.762 mm and the inside diameter of the working pipe was 
25.4 mm. Therefore, in our notation, e ~ 0.2 and ~. -~ l0 -3. Figure 3 shows the contours of the 
computed concentration • and of the axial velocity u3 for the sets of mean concentrations and flow 
rates which are in the ranges employed in the experiments. Specifically, the mean concentration 

in the three columns increases from 0.1 to 0.3 from left to right, and the flow rate Q is doubled 
row by row from bottom to top. We see that, under the action of gravity, a region of  clear fluid 
(4 - 0) appears at the top of the pipe in most cases, and that this region becomes smaller when 
the flow rate Q and/or the mean concentration ~ increase, illustrating the enhancement of the 
resuspension with increasing of Q and ~. We also see in figure 3 that the axial velocity profiles 
are blunt, especially when the mean concentration ~ is high, and that the location of the maximum 
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Figure 4. The profiles of the axial velocity, ua/K, along the axis x 2 for the cases in column C of figure 
3: Cl,  - - - ;  C2, - - . - - ;  C3, - - - .  The solid curve represents the parabolic profile of a homogeneous 

suspension of 4, -- 0.3. 
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Figure 5. The velocity field of the secondary flow within the cross section for case B1 in figure 3. 

axial velocity shifts above the centerline. These facts can be seen more clearly in figure 4, which 
depicts the profiles of  the axial velocity along the vertical diameter of  the cross section (the Xl = 0 
line) for ~ = 0.3 and where the parabolic profile of  a homogeneous suspension with ¢~ = 0.3 
everywhere is also drawn for purposes of comparison. 

It is especially encouraging that our results are also capable of predicting the experimental 
observation (Altobelli et al. 1991) that, when the mean concentration 7~ is high, the particles form 
a highly concentrated core, centered slightly above the pipe centerline and near the location of the 
maximum axial velocity. This concentrated core is illustrated by the dark-blue spots in column C 
of  figure 3, where it is seen that, when the flow rate increases, the core becomes bigger and the 
corresponding maximum value of the concentration within the core also becomes slightly larger. 
The mechanism causing the formation of this core is that, when the particle concentration is high, 
the diffusion due to the shear-rate gradient is strong and creates a large upward flux of  particles. 
On the other hand, when this part of the shear-induced diffusion is not strong enough to "support"  
the concentrated core, as in the case of low mean concentrations, the concentration decreases 
monotonically from the bottom to the top of the pipe. To test this hypothesis, we performed a 
simulation for the case C2 in figure 3 but without the diffusion term due to the shear-rate gradient 
(the second term of the right-hand side) of  [13] and obtained a concentration distribution which 
was entirely different from that shown in figure 3, in that it decreases monotonically from the 
bottom to the top of  the pipe. 

By comparing our figure 3 to figure 6 in the paper by Altobelli et al. (1991), one can see that 
the predictions described above are in excellent agreement with the experimental results. A slight 
difference, though, exists, in that the predicted shape of  the interface between the suspension and 
the clear fluid is concave rather than convex as shown by the experiment. This disagreement is 
primarily due to the convection resulting from the secondary flow, which, as illustrated by 
the vector field in figure 5, carries the particles up near the wall of the pipe and then down near 
the vertical plane of  symmetry. In fact, if we artificially ignore this convective transport due to the 
IJMF 20/3--J 
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secondary flow, we indeed predict a convex interface, as demonstrated in figure 6 for the case of 
B I of figure 3. This result and the fact that the suspension at the interface is very dilute and that, 
below the interface, the contours of the computed concentration are indeed convex, suggest, as one 
possibility, that the model may somehow underpredict the strength of the shear-induced diffusive 
flux when the local concentrations is very low. 

Finally, we note that, as seen from the transport equation [13], the time scale, T, needed for 
suspension flows to reach a steady concentration distribution should be inversely proportional to 
2, as pointed out by Nott & Brady (I 994) in their analysis of pressure-driven suspension flows using 
Stokesian dynamics, and should also increase when the magnitude of the diffusion coefficients 
decreases. This last point was confirmed by our time dependent simulations. Specifically, for 
2 = 10 3, we obtained steady solutions at about T -,, 2000 for ~ = 0.3 but only if T > 3000 for 

= 0.1. This implies that, for measuring fully developed concentration profiles in a pipe flow, the 
inlet length in an experiment needs to be relatively longer when the feed suspension is dilute. This 
fact may account for the observation by Koh et al. (1994) that, for the case of flow of neutrally 
buoyant particles in a rectangular channel, the measured concentrations near the center of the 
channel were quantitatively lower than the corresponding values predicted theoretically, expecially 
when the feed concentration was low. These authors attributed this disagreement to the finite size 
of the particles which was not taken into account by the model used in their analysis which actually 
is very similar to ours. It is not obvious, however, that this effect can explain why their predicted 
concentration profiles matched their experimental data much better when the feed concentration 
was higher, e.g. when it was increased to ~ = 0.3. 
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